The term "developmentally appropriate technology" refers to the notion that children develop, with different physical and intellectual needs and abilities at different ages. Children are not mini-me's, with the same cognitive faculties as an adult minus experience, facts, memories, etc. Their bodies are going through specific changes, and so are their brains -- they see and experience the world in different ways, and have different learning needs. So everything education-related, including technology, needs to be geared to -- appropriate to -- the child's age. The idea of "developmentally appropriate technology" is related to other "developmentally appropriate practices" in education.
I think one of the most important criticisms of technology in the classroom is that, in many cases, the technology that students are expected to work with is just not appropriate for their level of physical and cognitive development. Some criticisms of educational technology, like poor software, physical dangers, online dangers, and poor integration/application can be addressed through better modeling, scaffolding, monitoring, etc. The criticism that the cost/benefit ratio of new technology doesn't justify the education establishment's infatuation with it is another big criticism, and worth a separate posting. But the idea that a computer in the hands of a, say, 6-year-old is a bad idea, because a 6-year-old not only does not have the cognitive capacity to get the most out of the machine, but that it might actually hurt the child's development is a substantial criticism.
This is a theme in the technology critiques referenced in previous posts. For example, Fool's Gold argues that the "sheer power" of computers "seems more likely to repress the development of important intellectual capacities than to enhance it." (p. 33) Jane Healy writes in Failure to Connect that "computer use, being primarily a two-dimensional symbolic activity, may simply not be developmentally appropriate before the age of seven or eight."(p. 135) The brain-science logic behind this argument, according to Healy, is that the brain "undergoes certain 'critical' or 'sensitive periods in both childhood and adolescence when learning environments exert special kinds of effects and when certain types of activities and stimulation are most appropriate and necessary to maximize mental potential... If we waste or subvert these developmental windows, the losses may be irrecoverable." (p. 27) Important and necessary opportunities for imaginative play, concrete learning, physical activity, and social and emotional interaction with children and adults will be missed while the child is busy at the keyboard. There would seem to be a steep opportunity cost paid by thrusting computers onto students too early, or in the wrong way. (For a quick summary and great pullquotes of Healy's book, see this book review of Failure to Connect).
(Aside: The Waldorf approach to education, which informs Fool's Gold, Tech Tonic, and Oppenheimer, generally frowns on the heavy use of computers before high school. By high school age, teens are cognitively ready for the heavy amount of abstract reasoning, and will quickly pick up the basic computing skills they need for post-high school. The above-reference books agree that computer use in high schools is appropriate, as long as the technology curriculum includes an exploration of how computers work (along the lines of a shop class) and technology's role in society, in addition to learning computer operation and maintenance. Setzer and Monke (2001), also building on Waldorf ideas, in their article An Alternative View on Why, When and How Computers Should Be Used in Education are at the extreme end of the spectrum of technology use in schools, arguing that "they should not be used by children in any form before approximately age 15." Setzer and Monke lay out an ideal technology curriculum, which is of interest.)
But between the primary years (say, up to seven years old / 2nd grade) and high school (say, starting at age 14), that is, from Grades 3 through 8, there is a broad period of growth and transition in the child, with changing cognitive abilities and readiness for new types of learning.
I have not been able to find a technology curriculum that explicitly references a model of child development. The International Society for Technology in Education (ISTE) provides examples of its National Educational Technology Standards for Students (NETS) for students that are tiered in grade bands (K-2, 3-5, 6-8) in its 2007 Profiles for Technology Literate Students. For ISTE, a kindergartner might "identify, research, and collect data on an environmental issue using digital resources and propose a developmentally appropriate solution." Such an example recognizes that the kindergartner is a mini-me, constrained only by his or her knowledge. For ISTE, "developmentally appropriate" means -- well the way they use it I don't know -- a solution that kindergartners could implement? That uses vocabulary a kindergartner understands? But it does not suggest that a kindergartner sees the world in different ways than older students, that he or she needs to strengthen certain faculties through tactile engagement and physical activity and active, imaginative play that older students maybe no longer need, or need as much.
Anyway, this is my quest now -- to find a technology curriculum that includes a "developmentally appropriate" dimension that is based on a model of child development that recognizes distinctive stages of development and matches technology use to those stages.
To be continued...
jd
Monday, June 29, 2009
Wednesday, June 24, 2009
Teaching social justice via science and math
These are some notes from a Teachers for Social Justice event I attended here in Chicago way back in March. Titled "Teaching and learning mathematics and science for social justice", the speakers discussed ways that social justice issues have been raised in the course of teaching chemistry and math at the Little Village/North Lawndale Social Justice High School. Again, these are notes, and may be verbatim (or close to) material from the main speakers, Daniel Morales-Doyle, Alejandra Frausto and Rico Gutstein.
What does it mean to teach social justice in science? Science is a way of grappling with identity. It provides a means for students to shift away from solely being consumers of knowledge and culture to also being producers of knowledge and culture. Science can also be used to de-mystify the objects of consumption.
In the chemistry class example, youth popular culture provides the entry point for social justice issues in the curriculum. Scientific concepts and experiments tie in with artifacts of popular culture and their production process (including environmental implications, the labor process, and the political and social conditions of production).
The (ideal) social issue science curriculum needs five components: A reference point to youth popular culture, engaging lab activities, a social justice issue, good science content, and rigorous academic skills. The successful curriculum relies on good pedagogy: clarity of purpose (to help students and their community), high expectations, caring, discipline, a good work ethic, consistency, modeling uncertainty and seeking additional information, passion, enthusiasm. [Discipline and punishment are two different things.] Good pedagogy also values student knowledge ("foreground their knowledge").
For younger science students, teachers can help students visualize what a scientist is (and help them visualize themselves as scientists). Teachers should help students maintain (or encourage in them) a curiosity about the natural world. Teachers should build student confidence in the student's observations and thinking.
The speakers handed out a diagram of "Critical Praxis in Chemistry" that portrayed a cycle on inquiry. The cycle begins with a problem in popular culture. This is followed by learning about chemistry theory to support the inquiry into the popular culture problem. Chemistry theory is supported and enhanced by experiments, conducted in series of threes, or triads. Experiment one introduces a concept; experiment two builds skills, and experiment three has students exploring and inquiring about the unit problem. The learning/experimenting stages may go through multiple iterations. The fourth stage of the cycle comprises assessment and action -- students are asked "to apply their newly constructed knowledge of nature to produce culture that may affect changes in the problems [they] have identified." This in turn may initiate a new cycle of investigation.
The speakers provided several examples of "critical chemistry" in practice. One example, "The Science of Bling", begins with the unit question, "How is the value of diamonds justified by their physical and chemical properties?" The question connects to youth culture through engagement and wedding rings, hip-hop, fashion, and films like Bling and Blood Diamond. Social justice issues include conflict diamonds and the exploitation of natural resources in developing countries. Key chemistry concepts include the chemical and physical properties and classification of matter. For an authentic assessment, students write a pre- and post-unit "Love Letter" to a hypothetical fiance(e) about the issue of a diamond engagement ring.
Social justice issues in math are introduced in a similar way. Math is used to help students understand social reality. Units begin with authentic problems that students encounter in their community. Rico Gutstein described a unit that he did with high school students on predatory lending. The impetus for the unit arose from one student's family facing foreclosure. The math component included concepts like principal and interest, growth rates, compounding, budgeting and so on. Gutstein also described an investigation students did into the 2004 elections which addressed probability and the possibility that the presidential election was stolen (students produced an editorial raising these questions as a result of their work). Gutstein has elsewhere described a unit on racial profiling which incorporated probability concepts. An important element of "social justice math" is that it should tie into the lives of students. [Personal aside - This places an additional burden on the teacher to collect the necessary data and research to ensure a productive unit for the students.]
jd
What does it mean to teach social justice in science? Science is a way of grappling with identity. It provides a means for students to shift away from solely being consumers of knowledge and culture to also being producers of knowledge and culture. Science can also be used to de-mystify the objects of consumption.
In the chemistry class example, youth popular culture provides the entry point for social justice issues in the curriculum. Scientific concepts and experiments tie in with artifacts of popular culture and their production process (including environmental implications, the labor process, and the political and social conditions of production).
The (ideal) social issue science curriculum needs five components: A reference point to youth popular culture, engaging lab activities, a social justice issue, good science content, and rigorous academic skills. The successful curriculum relies on good pedagogy: clarity of purpose (to help students and their community), high expectations, caring, discipline, a good work ethic, consistency, modeling uncertainty and seeking additional information, passion, enthusiasm. [Discipline and punishment are two different things.] Good pedagogy also values student knowledge ("foreground their knowledge").
For younger science students, teachers can help students visualize what a scientist is (and help them visualize themselves as scientists). Teachers should help students maintain (or encourage in them) a curiosity about the natural world. Teachers should build student confidence in the student's observations and thinking.
The speakers handed out a diagram of "Critical Praxis in Chemistry" that portrayed a cycle on inquiry. The cycle begins with a problem in popular culture. This is followed by learning about chemistry theory to support the inquiry into the popular culture problem. Chemistry theory is supported and enhanced by experiments, conducted in series of threes, or triads. Experiment one introduces a concept; experiment two builds skills, and experiment three has students exploring and inquiring about the unit problem. The learning/experimenting stages may go through multiple iterations. The fourth stage of the cycle comprises assessment and action -- students are asked "to apply their newly constructed knowledge of nature to produce culture that may affect changes in the problems [they] have identified." This in turn may initiate a new cycle of investigation.
The speakers provided several examples of "critical chemistry" in practice. One example, "The Science of Bling", begins with the unit question, "How is the value of diamonds justified by their physical and chemical properties?" The question connects to youth culture through engagement and wedding rings, hip-hop, fashion, and films like Bling and Blood Diamond. Social justice issues include conflict diamonds and the exploitation of natural resources in developing countries. Key chemistry concepts include the chemical and physical properties and classification of matter. For an authentic assessment, students write a pre- and post-unit "Love Letter" to a hypothetical fiance(e) about the issue of a diamond engagement ring.
Social justice issues in math are introduced in a similar way. Math is used to help students understand social reality. Units begin with authentic problems that students encounter in their community. Rico Gutstein described a unit that he did with high school students on predatory lending. The impetus for the unit arose from one student's family facing foreclosure. The math component included concepts like principal and interest, growth rates, compounding, budgeting and so on. Gutstein also described an investigation students did into the 2004 elections which addressed probability and the possibility that the presidential election was stolen (students produced an editorial raising these questions as a result of their work). Gutstein has elsewhere described a unit on racial profiling which incorporated probability concepts. An important element of "social justice math" is that it should tie into the lives of students. [Personal aside - This places an additional burden on the teacher to collect the necessary data and research to ensure a productive unit for the students.]
jd
Saturday, June 20, 2009
What a good Technology in Education program should include
I have just completed another term at National-Louis University (NLU), in their Technology in Education (TIE) program. As part of the coursework, I also finally finished Todd Oppenheimer's Flickering Mind, and it got me to thinking about what a good Technology in Education program should have (and what I think is missing from the NLU program).
First, a good technology in education program needs a solid history (and maybe philosophy or ethics) of technology class. The class would delve into the relationship of humans to their technology, the relationship of technology to social change, technology as extensions of the human body and what that has meant for social development, and some good discussion of the dialectic between technology and mind or ideas (ideas shape technology, technology shapes ideas). Some exploration of the specific relationship between capitalism and technology would be good. Students could prepare reports on the development of specific technologies and their impact. Students should somewhere in the program be exposed to the idea of "appropriate technology", this might be the class to introduce it. Readings might include Mumford, Marx, McLuhan, maybe E. F. Schumacher, also Steve Talbott. The main hoped-for outcome of the class would be for students to understand that technology is developed within a social and historical context, and affects a society in unpredictable and not always desirable ways. The class should discuss "Ten Principles for a New Literacy of Technology" and evaluate the NETS standards. The NETS standards are curiously weak on these topics.
Second, a good technology in education program should have a serious course on the history of technology in education. This class would parallel a history of education, especially in the United States, but with a special focus on technology in the classroom. Obvious authors to read would include Larry Cuban and Todd Oppenheimer. Tech Tonic might fit here also. This class would provide an important context for technology teachers to understand their role in education. The development of the NETS standards could be explored here.
Third, while educational psychology is included in the current TIE curriculum, it should have a special focus on the role of technology in learning. This would include an exploration of concepts of child development, and their implications for technology in the classroom. The fundamental question to address would be what kinds of technologies are appropriate in the classroom, and at what age. The NLU "Cognition and Instruction" course used the National Academy Press book How People Learn, which is okay, but for some reason the course skipped Chapter 9, "Technology to Support Learning" that specifically addressed research findings (which, in the context education research, might be an oxymoron) relating to technology and learning. A Jane Healey reading would be helpful here; also maybe Fool's Gold.
I'm not sure where this should go, but I think serious personal reflection on how one thinks about technology should take place somewhere. Maybe in the context of one of the two classes above. I had to develop a "personal philosophy of education" for a history and philosophy of education class which was a useful exercise; I'm thinking here of a "personal philosophy of technology in education". Or even better, a perspective written at the start of the program, and then at the end of the program. The end-of-program perspective would be an important portfolio artifact. (As a principal, I would want to know a prospective technology teacher's view of technology in education.
I am generally disappointed in the NLU Program, including its conception and its delivery. I will skip the analysis, but offer this possible enhancement. I think programs like this would be more effective if they were organized more like a "work-study" program, and the coursework more tightly bound to our work lives. Assignments in the course work would be actual projects that we would be expected to carry out at our respective school, not in addition to everything else we do, but as part of it. So the school work would also be work work. (As it is now, homework assignments are on top of an extra-heavy workload, and rarely tie in with what is happening at school.) This would require some tighter coordination between our program sponsor, the Office of Academic Enhancement (OAE), the NLU TIE program, the principals at our respective schools, and the students (and we would then really become co-creators of our education). The principals especially would need to be on board, and transcend their perception of their technology teachers as OAE-subsidized tech support personnel (aka electronic janitor). I think there are a lot of possibilities here. Our schools would become more like lab schools for discovering best practices; and our classes at NLU become more like a collaborative forum for evaluating results.
jd
First, a good technology in education program needs a solid history (and maybe philosophy or ethics) of technology class. The class would delve into the relationship of humans to their technology, the relationship of technology to social change, technology as extensions of the human body and what that has meant for social development, and some good discussion of the dialectic between technology and mind or ideas (ideas shape technology, technology shapes ideas). Some exploration of the specific relationship between capitalism and technology would be good. Students could prepare reports on the development of specific technologies and their impact. Students should somewhere in the program be exposed to the idea of "appropriate technology", this might be the class to introduce it. Readings might include Mumford, Marx, McLuhan, maybe E. F. Schumacher, also Steve Talbott. The main hoped-for outcome of the class would be for students to understand that technology is developed within a social and historical context, and affects a society in unpredictable and not always desirable ways. The class should discuss "Ten Principles for a New Literacy of Technology" and evaluate the NETS standards. The NETS standards are curiously weak on these topics.
Second, a good technology in education program should have a serious course on the history of technology in education. This class would parallel a history of education, especially in the United States, but with a special focus on technology in the classroom. Obvious authors to read would include Larry Cuban and Todd Oppenheimer. Tech Tonic might fit here also. This class would provide an important context for technology teachers to understand their role in education. The development of the NETS standards could be explored here.
Third, while educational psychology is included in the current TIE curriculum, it should have a special focus on the role of technology in learning. This would include an exploration of concepts of child development, and their implications for technology in the classroom. The fundamental question to address would be what kinds of technologies are appropriate in the classroom, and at what age. The NLU "Cognition and Instruction" course used the National Academy Press book How People Learn, which is okay, but for some reason the course skipped Chapter 9, "Technology to Support Learning" that specifically addressed research findings (which, in the context education research, might be an oxymoron) relating to technology and learning. A Jane Healey reading would be helpful here; also maybe Fool's Gold.
I'm not sure where this should go, but I think serious personal reflection on how one thinks about technology should take place somewhere. Maybe in the context of one of the two classes above. I had to develop a "personal philosophy of education" for a history and philosophy of education class which was a useful exercise; I'm thinking here of a "personal philosophy of technology in education". Or even better, a perspective written at the start of the program, and then at the end of the program. The end-of-program perspective would be an important portfolio artifact. (As a principal, I would want to know a prospective technology teacher's view of technology in education.
I am generally disappointed in the NLU Program, including its conception and its delivery. I will skip the analysis, but offer this possible enhancement. I think programs like this would be more effective if they were organized more like a "work-study" program, and the coursework more tightly bound to our work lives. Assignments in the course work would be actual projects that we would be expected to carry out at our respective school, not in addition to everything else we do, but as part of it. So the school work would also be work work. (As it is now, homework assignments are on top of an extra-heavy workload, and rarely tie in with what is happening at school.) This would require some tighter coordination between our program sponsor, the Office of Academic Enhancement (OAE), the NLU TIE program, the principals at our respective schools, and the students (and we would then really become co-creators of our education). The principals especially would need to be on board, and transcend their perception of their technology teachers as OAE-subsidized tech support personnel (aka electronic janitor). I think there are a lot of possibilities here. Our schools would become more like lab schools for discovering best practices; and our classes at NLU become more like a collaborative forum for evaluating results.
jd
Tuesday, June 2, 2009
Globalization and charter schools
Below is a link to a paper I did a few months ago for a class on current education issues. I wanted to better understand the charter school phenomenon as an expression of globalization as I have understood it. Here is the abstract:
jd
Education has always reflected the mode of production. "Globalization" is a new mode of capitalist production, capitalism in the age of electronics, with distinctive features and demands. Charter schools, as an education reform, reflect important threads within globalization. First, the reform of educational content and delivery is really a change to meet the needs of globalization for new skill sets. Second, charter schools are a form of privatization, which is an important feature of globalization's demand for new sites of valorization and profit. Third, the network form is an emergent property of globalization, which is expressed through attempts to break down the centralized public school system through charter schools. The debate around charter schools takes place within the assumption of the supremacy of the market and the inevitability of globalization, leading to a set of limited or even false choices. For a real debate on education reform, one must move beyond the narrow confines of the terms of globalization.I need to work a more on the ideas I think. Comments welcome; here is the link to the full piece: Globalization and charter schools.
jd
Saturday, May 30, 2009
Why isn't this mandatory reading in teacher ed?
I am just starting to read over the Alliance for Childhood's publication Fool's Gold (see previous post), and am surprised that I only just heard of this publication (or its sister publication Tech Tonic: Towards a New Literacy of Technology) after spending the past almost two years in teacher education classes, which included completing one Masters program and now being almost halfway through a second one. And I only happened across the Alliance's publications because of a reference in another book, Todd Oppenheimer's Flickering Mind.
Mea culpa: I should have been more conscious of this technology in education counter-culture. I worked on Computer Professionals for Social Responsibilities (CPSR)-Berkeley's "A Computer and Information Technologies Platform" in 1992; I have been in CPSR for as many years (okay, membership lapsed for a year+, but I just took care of that), I have read a fair amount about Waldorf methods, I have read a good deal of Steve Talbott's work (which is in a similar vein), and worked with computers long enough to know many of the risks and limitations of their use in learning. I am pretty sure I am in an emailable relationship (i.e., they would open an email from me and maybe respond) with two members of the "Alliance for Childhood Roundtable of Rethinking Technology Literacy", very fond of the writing of another member (David Abram), have read things by another member, and recognize the name of one more member. So I feel like I should have been more on top of this. Why not I ask myself -- perhaps it is because the last two years have been such a blur of switching professions, trying to get up to speed on how to teach, switching roles again, taking grad classes, etc. that I have not really taken the time to seriously reflect on, especially, the proper role of new technologies in education. But that sense of knowing better, of not being more cognizant and critical and self-critical is part of why Oppenheimer's book, and the Alliance's publications, have made such an impression on me.
And this year I am a technology teacher, with the specific charge to help teachers integrate new technologies into the curriculum and instruction. I am in a Masters program cohort with other teachers in a similar position in CPS, and we have yet to seriously discuss what is appropriate technology in the classroom. Serious in the sense of what is a proper framework, why do it, what do others say, what does research have to tell us (accepting that educational research is so mushy and inconclusive), what does our own experience tell us -- personal experience as well as experience teaching and helping others to teach. Let's step off of the train for a few minutes, and consider where it is going.
That set of questions in the previous paragraph -- those are important questions!
jd
Mea culpa: I should have been more conscious of this technology in education counter-culture. I worked on Computer Professionals for Social Responsibilities (CPSR)-Berkeley's "A Computer and Information Technologies Platform" in 1992; I have been in CPSR for as many years (okay, membership lapsed for a year+, but I just took care of that), I have read a fair amount about Waldorf methods, I have read a good deal of Steve Talbott's work (which is in a similar vein), and worked with computers long enough to know many of the risks and limitations of their use in learning. I am pretty sure I am in an emailable relationship (i.e., they would open an email from me and maybe respond) with two members of the "Alliance for Childhood Roundtable of Rethinking Technology Literacy", very fond of the writing of another member (David Abram), have read things by another member, and recognize the name of one more member. So I feel like I should have been more on top of this. Why not I ask myself -- perhaps it is because the last two years have been such a blur of switching professions, trying to get up to speed on how to teach, switching roles again, taking grad classes, etc. that I have not really taken the time to seriously reflect on, especially, the proper role of new technologies in education. But that sense of knowing better, of not being more cognizant and critical and self-critical is part of why Oppenheimer's book, and the Alliance's publications, have made such an impression on me.
And this year I am a technology teacher, with the specific charge to help teachers integrate new technologies into the curriculum and instruction. I am in a Masters program cohort with other teachers in a similar position in CPS, and we have yet to seriously discuss what is appropriate technology in the classroom. Serious in the sense of what is a proper framework, why do it, what do others say, what does research have to tell us (accepting that educational research is so mushy and inconclusive), what does our own experience tell us -- personal experience as well as experience teaching and helping others to teach. Let's step off of the train for a few minutes, and consider where it is going.
That set of questions in the previous paragraph -- those are important questions!
jd
Thursday, May 28, 2009
Ten Principles for a New Literacy of Technology
This is probably old news to people who have followed educational technology for a while. But I just came across the Alliance for Childhood's two publications on technology in education. Fool's Gold: A Critical Look at Computers in Childhood came out in 2000, followed by Tech Tonic: Towards a New Literacy of Technology (both publications are available as PDFs from the Alliance website). Hopefully I will be able to review them here, but in the meantime, here are "Ten Principles for a New Literacy of Technology" from Tech Tonic:
1. Slow down: honor the developmental needs of children.
2. With adolescents, teach technology as social ethics in action, with technical skills in a supporting role.
3. Relationships with the real world come first.
4. Technology is not destiny; its design and use flow from human choices.
5. Choice implies limits—and the option to say “no.”
6. Those affected by technological choices deserve a voice in making them.
7. Use tools and technologies with mindfulness.
8. To teach technology literacy, become technologically literate.
9. Honor the precautionary principle: When uncertain, err on the side of caution.
• Ask tough questions about long-term consequences.
• Make time, space, and silence for reflection.
• Responsibility grows from humility.
• Be resourceful with the tools you already have.
10. Respect the sacredness of life in all its diversity.
jd
1. Slow down: honor the developmental needs of children.
2. With adolescents, teach technology as social ethics in action, with technical skills in a supporting role.
3. Relationships with the real world come first.
4. Technology is not destiny; its design and use flow from human choices.
5. Choice implies limits—and the option to say “no.”
6. Those affected by technological choices deserve a voice in making them.
7. Use tools and technologies with mindfulness.
8. To teach technology literacy, become technologically literate.
9. Honor the precautionary principle: When uncertain, err on the side of caution.
• Ask tough questions about long-term consequences.
• Make time, space, and silence for reflection.
• Responsibility grows from humility.
• Be resourceful with the tools you already have.
10. Respect the sacredness of life in all its diversity.
jd
Monday, May 25, 2009
The limits of technology - thinking about two recent articles
Reviews of two recent articles...
I came across Sam Anderson's "In Defense of Distraction", which appeared in New York Magazine (May 17, 2009) via the main source of my education news, the Diigo in Education group email updates. The article is quite funny. Anderson considers the "attention crisis": "the problem of attention has migrated right into the center of our cultural attention." The source of the many distractions are new technologies; and the distractions are leading us into a "dark age": "Adopting the Internet as the hub of our work, play, and commerce." Anderson writes, "has been the intellectual equivalent of adopting corn syrup as the center of our national diet, and we’ve all become mentally obese."
The "doomsayers" are silly, he argues, because (a) every technological advance has had its crop of doomsayers [I'm not sure why that makes it silly, only consistent - jd] and (b) "the virtual horse has already left the digital barn", so the question is not how to stem the tide of inattentive multitasking, but how to deal with it, if at all.
New technologies lead us to "continuous partial attention" (Anderson is quoting "tech theorist" Linda Stone) -- we are never quite focused on anything, flitting from task to task, and we are less capable for it. Two quotes from his article: "People who frequently check their e-mail have tested as less intelligent than people who are actually high on marijuana," and "If Einstein were alive today, [David Meyer -- a leading cognitive scientist at the University of Michigan] says, he’d probably be forced to multitask so relentlessly in the Swiss patent office that he’d never get a chance to work out the theory of relativity."
As something of an aside, Meyer's quote raises an aspect of distraction that Anderson does not address. Distractions are forced onto the modern worker (especially those who process information) as part of the intensification of work. This is classic Marxist economic theory -- the imperative to maximize profit requires either the extension of the work day or the intensification of the work process, to squeeze more value out of the worker in a given slice of time. As in "forced to multitask so relentlessly". As Anderson does note, such task-switching is death to deep creativity, which reinforces the idea that most "information workers" are not there to add value as creative thinkers, but are simply meatbots routing information and making quick decisions too complex (yet) to be done by a machine. So an important source of distraction is not technology per se, but the conditions under which technology is deployed. While public school teachers are putatively in the not-for-profit sector of the economy, they face the same productivity mandate. It bleeds in from the privatized education sector and education directives emanating from the world economy. So teachers are constantly pulled from one thing to another in an attempt to produce more in the same or less amount of time.
Anderson reviews one possible solution to "the attention problem": deliberately focusing attention or meditation. He also explores medical solutions -- neuroenhancers like Adderall, intended as an ADHD treatment, which tends to "focus the mind" ("can produce, in healthy people, superhuman states of attention"); and "lifehacking", an endless quest for organizing one's life (but, "One of the weaknesses of lifehacking as a weapon in the war against distraction, [Merlin Mann, one of the "stars" of the lifehacking movement] admits, is that it tends to become extremely distracting").
Anderson then moves from possible antidotes to distraction to suggest that we should embrace the "poverty of attention". After all, an important part of creativity is allowing the mind to float so that it can "mark the before unapprehended relations of things" (as Shelley described metaphor). He remarks on the perhaps quintessential distraction in literature of Marcel Proust and his madeleine. A super-focused person would not allow him or herself to be transported by a cookie. As Anderson notes, people who take Adderall also have the sensation of losing their creativity (quoting Slate writer Joshua Foer, "I had a nagging suspicion that I was thinking with blinders on"). The ability to be distracted is a gift, part of our human makeup, that helps us in many ways.
So new technologies have created a world of constant interruption, but distraction is good. The constant stream of distractions allowed by email, text messages, phone calls, Google, Twitter, Facebook, etc. maybe are good things? As Anderson concludes,
There are a lot of "mights" in those final sentences. "Might and maybe", but (maybe) or (probably) teachers have a role to play here in helping make that leap from attention-switching or flitting to connection-making and solution-finding.
As any teacher will tell you, attention, engagement, focus, etc. are major issues in the classroom. Electronic media are a major part of students' lives; Anderson writes that "One recent study found that American teenagers spend an average of 6.5 hours a day focused on the electronic world, which strikes me as a little low." One of the most striking things to me, from this past school year, has been the degree to which otherwise rowdy students will focus on a computer screen, whether it be watching a BrainPOP video or floating around the virtual science investigation of River City or assembling a beat with GarageBand.
One is tempted to declare victory and leave it at that. But what are the kids learning? As I am reminded from different directions, including by our advisors from CUIP (the expanded acronym is too long to write out, check the link for more) or Todd Oppenheimer's book, The Flickering Mind, or any decent pedagogy course, we want the students to become deeper thinkers (or move higher up Bloom's taxonomy). The verbs that go along with Bloom's highest level (I am looking at "Quick Flip Questions for the Revised Bloom's Taxonomy" from Edupress, 2001) include "adapt", "build", "create", "elaborate", "imagine", "predict", and so on. My suspicion, or perhaps, my fear, is that the way we use technology (or to 'fess up, the way I have helped my teachers use technology this year) has not led to these "higher-order thinking skills" ("HOTS" in ed lingo, a field which is as fond of acronyms as the high tech field). To go further, I suspect that these skills are not attainable via technology.
Goethean science provides a useful structure for sorting out and organizing the conflicting actions of focus and "distraction". Goethe was also a scientist, and approached scientific investigation in a distinctive, rather poetic, way. Inasmuch as it can be described as a "method", it is consists of two main phases. The first phase is the focused examination of the object under investigation, including both careful observation as well as learning what past researchers have observed. The second phase is the recreation of the phenomenon in the imagination, reflecting or meditating on the object. These two phases succeed each other iteratively, each feeding the other, towards new questions and further and deeper understanding of the phenomenon. (This method is described and explored in the writings of Craig Holdrege at the Nature Institute). The concentrated focus is essential for apprehending the phenomenon; while the recreation of the object in the imagination opens the mind to a kind of "distraction" or wandering that can yield new insights, connections, and meaning, of developing a deep sensitivity and knowledge of the phenomenon. Both phases are necessary, and reinforce each other.
In this process, technology can take one only so far. The role of the imagination in the process of knowing cannot be done with technology. It is uniquely done in the mind. Technology might help in the focused observation phase (microscopes, data collection and statistical analysis, literature review) and in the reporting of results (which granted is an opportunity for additional reflection), the meaningful higher order thinking skills are cultivated away from computers, during reflection time. It might happen during walks or conversations or staring out the window or sitting with one's eyes closed, thinking about the phenomenon.
Attention-flitting has some benefits somewhere along the timeline of investigation, but for Anderson's mights and maybes to come into being, it needs to be combined with other skills and attitudes like focus and reflection. Reflection allows for a kind of gentle distraction, not the jangle of electronica. Here comes into play the role of a teacher, to cultivate the entire range of mental activities that go into deep understanding.
Another recent article also raised questions for me about the role of technology in education. Sunday's (May 24, 2009) New York Times Magazine includes an article by Matthew Crawford, "The Case for Working With Your Hands", which discusses something I have been thinking about vis-a-vis the kids at my school. I don't think the students at my school get nearly enough experience working with materials, with stuff. Partly this is a function of economics, what they are exposed to at home, opportunities, what their families can afford, etc. Partly this is a function of the economy at large, of globalization, or capitalism in the age of electronics. People are more likely to buy things instead of make them, further constraining the opportunities to work with matter. Neighborhood opportunities may be constrained, because of social marginalization. Partly it is a function of other, related social conditions. I am thinking about Richard Louv's "nature deficit disorder", and the lack of opportunities for kids to interact with nature. The streets can be dangerous, so better to stay inside. Outside of the very important opportunities in once-a-week art class, and maybe occasional hands-on science lessons, students do not have a lot of opportunity to work with stuff, to interact with matter.
Crawford's article reminds us that interacting with matter -- wood, stone, fabric, dirt, flowers, clay, paint, etc. directly is an important, direct source of knowledge. In our mediated world, "confrontations with material reality have become exotically unfamiliar." We have become world-stupid. I am reminded of a perhaps apocryphal story related by a former co-worker who had returned from a photo safari in East Africa. On a previous outing, a tourist was mauled by a lion after he insisted on getting out of the Range Rover to photograph the animal close-up. I assume that the tourist had previously encountered lions on television, with no mishaps. Nothing in his experience led him to think there was any danger in getting out of the car.
This indicates another weakness of technology's typical role in the classroom. Technology is often used to give students exposure to the world, by reading articles or watching video. But these are mediated experiences, and have lost most of the richness of direct contact. (Which is not to say mediated experiences are not useful, just that they are not a proper substitute for the real thing.) We learn with our hands as well as our eyes and ears. You can't really understand how the world works without engaging with it directly.
Crawford brings up another dimension of engagement with the world -- how we engage with it. In describing the learning process of working with motorcycle engines, Crawford describes the process as a "conversation": "Good diagnosis requires attentiveness to the machine, almost a conversation with it, rather than assertiveness." This echoes what Craig Holdrege has written about doing Goethean science. He describes scientific investigation as a conversation with phenomena, which also implies an ethical respect for the object of investigation. (See also this piece I wrote: "The Goethean Approach and Human Artifacts")
Again, there is a proper place for technology in the classroom, but the material interaction with keyboard and mouse cannot replace the important interactions with everything else.
I realize I am not saying anything new.
jd
I came across Sam Anderson's "In Defense of Distraction", which appeared in New York Magazine (May 17, 2009) via the main source of my education news, the Diigo in Education group email updates. The article is quite funny. Anderson considers the "attention crisis": "the problem of attention has migrated right into the center of our cultural attention." The source of the many distractions are new technologies; and the distractions are leading us into a "dark age": "Adopting the Internet as the hub of our work, play, and commerce." Anderson writes, "has been the intellectual equivalent of adopting corn syrup as the center of our national diet, and we’ve all become mentally obese."
The "doomsayers" are silly, he argues, because (a) every technological advance has had its crop of doomsayers [I'm not sure why that makes it silly, only consistent - jd] and (b) "the virtual horse has already left the digital barn", so the question is not how to stem the tide of inattentive multitasking, but how to deal with it, if at all.
New technologies lead us to "continuous partial attention" (Anderson is quoting "tech theorist" Linda Stone) -- we are never quite focused on anything, flitting from task to task, and we are less capable for it. Two quotes from his article: "People who frequently check their e-mail have tested as less intelligent than people who are actually high on marijuana," and "If Einstein were alive today, [David Meyer -- a leading cognitive scientist at the University of Michigan] says, he’d probably be forced to multitask so relentlessly in the Swiss patent office that he’d never get a chance to work out the theory of relativity."
As something of an aside, Meyer's quote raises an aspect of distraction that Anderson does not address. Distractions are forced onto the modern worker (especially those who process information) as part of the intensification of work. This is classic Marxist economic theory -- the imperative to maximize profit requires either the extension of the work day or the intensification of the work process, to squeeze more value out of the worker in a given slice of time. As in "forced to multitask so relentlessly". As Anderson does note, such task-switching is death to deep creativity, which reinforces the idea that most "information workers" are not there to add value as creative thinkers, but are simply meatbots routing information and making quick decisions too complex (yet) to be done by a machine. So an important source of distraction is not technology per se, but the conditions under which technology is deployed. While public school teachers are putatively in the not-for-profit sector of the economy, they face the same productivity mandate. It bleeds in from the privatized education sector and education directives emanating from the world economy. So teachers are constantly pulled from one thing to another in an attempt to produce more in the same or less amount of time.
Anderson reviews one possible solution to "the attention problem": deliberately focusing attention or meditation. He also explores medical solutions -- neuroenhancers like Adderall, intended as an ADHD treatment, which tends to "focus the mind" ("can produce, in healthy people, superhuman states of attention"); and "lifehacking", an endless quest for organizing one's life (but, "One of the weaknesses of lifehacking as a weapon in the war against distraction, [Merlin Mann, one of the "stars" of the lifehacking movement] admits, is that it tends to become extremely distracting").
Anderson then moves from possible antidotes to distraction to suggest that we should embrace the "poverty of attention". After all, an important part of creativity is allowing the mind to float so that it can "mark the before unapprehended relations of things" (as Shelley described metaphor). He remarks on the perhaps quintessential distraction in literature of Marcel Proust and his madeleine. A super-focused person would not allow him or herself to be transported by a cookie. As Anderson notes, people who take Adderall also have the sensation of losing their creativity (quoting Slate writer Joshua Foer, "I had a nagging suspicion that I was thinking with blinders on"). The ability to be distracted is a gift, part of our human makeup, that helps us in many ways.
So new technologies have created a world of constant interruption, but distraction is good. The constant stream of distractions allowed by email, text messages, phone calls, Google, Twitter, Facebook, etc. maybe are good things? As Anderson concludes,
There’s been lots of hand-wringing about all the skills they might lack, mainly the ability to concentrate on a complex task from beginning to end, but surely they can already do things their elders can’t—like conduct 34 conversations simultaneously across six different media, or pay attention to switching between attentional targets in a way that’s been considered impossible... Kids growing up now might have an associative genius we don’t—a sense of the way ten projects all dovetail into something totally new. They might be able to engage in seeming contradictions: mindful web-surfing, mindful Twittering. Maybe, in flights of irresponsible responsibility, they’ll even manage to attain the paradoxical, Zenlike state of focused distraction.
There are a lot of "mights" in those final sentences. "Might and maybe", but (maybe) or (probably) teachers have a role to play here in helping make that leap from attention-switching or flitting to connection-making and solution-finding.
As any teacher will tell you, attention, engagement, focus, etc. are major issues in the classroom. Electronic media are a major part of students' lives; Anderson writes that "One recent study found that American teenagers spend an average of 6.5 hours a day focused on the electronic world, which strikes me as a little low." One of the most striking things to me, from this past school year, has been the degree to which otherwise rowdy students will focus on a computer screen, whether it be watching a BrainPOP video or floating around the virtual science investigation of River City or assembling a beat with GarageBand.
One is tempted to declare victory and leave it at that. But what are the kids learning? As I am reminded from different directions, including by our advisors from CUIP (the expanded acronym is too long to write out, check the link for more) or Todd Oppenheimer's book, The Flickering Mind, or any decent pedagogy course, we want the students to become deeper thinkers (or move higher up Bloom's taxonomy). The verbs that go along with Bloom's highest level (I am looking at "Quick Flip Questions for the Revised Bloom's Taxonomy" from Edupress, 2001) include "adapt", "build", "create", "elaborate", "imagine", "predict", and so on. My suspicion, or perhaps, my fear, is that the way we use technology (or to 'fess up, the way I have helped my teachers use technology this year) has not led to these "higher-order thinking skills" ("HOTS" in ed lingo, a field which is as fond of acronyms as the high tech field). To go further, I suspect that these skills are not attainable via technology.
Goethean science provides a useful structure for sorting out and organizing the conflicting actions of focus and "distraction". Goethe was also a scientist, and approached scientific investigation in a distinctive, rather poetic, way. Inasmuch as it can be described as a "method", it is consists of two main phases. The first phase is the focused examination of the object under investigation, including both careful observation as well as learning what past researchers have observed. The second phase is the recreation of the phenomenon in the imagination, reflecting or meditating on the object. These two phases succeed each other iteratively, each feeding the other, towards new questions and further and deeper understanding of the phenomenon. (This method is described and explored in the writings of Craig Holdrege at the Nature Institute). The concentrated focus is essential for apprehending the phenomenon; while the recreation of the object in the imagination opens the mind to a kind of "distraction" or wandering that can yield new insights, connections, and meaning, of developing a deep sensitivity and knowledge of the phenomenon. Both phases are necessary, and reinforce each other.
In this process, technology can take one only so far. The role of the imagination in the process of knowing cannot be done with technology. It is uniquely done in the mind. Technology might help in the focused observation phase (microscopes, data collection and statistical analysis, literature review) and in the reporting of results (which granted is an opportunity for additional reflection), the meaningful higher order thinking skills are cultivated away from computers, during reflection time. It might happen during walks or conversations or staring out the window or sitting with one's eyes closed, thinking about the phenomenon.
Attention-flitting has some benefits somewhere along the timeline of investigation, but for Anderson's mights and maybes to come into being, it needs to be combined with other skills and attitudes like focus and reflection. Reflection allows for a kind of gentle distraction, not the jangle of electronica. Here comes into play the role of a teacher, to cultivate the entire range of mental activities that go into deep understanding.
Another recent article also raised questions for me about the role of technology in education. Sunday's (May 24, 2009) New York Times Magazine includes an article by Matthew Crawford, "The Case for Working With Your Hands", which discusses something I have been thinking about vis-a-vis the kids at my school. I don't think the students at my school get nearly enough experience working with materials, with stuff. Partly this is a function of economics, what they are exposed to at home, opportunities, what their families can afford, etc. Partly this is a function of the economy at large, of globalization, or capitalism in the age of electronics. People are more likely to buy things instead of make them, further constraining the opportunities to work with matter. Neighborhood opportunities may be constrained, because of social marginalization. Partly it is a function of other, related social conditions. I am thinking about Richard Louv's "nature deficit disorder", and the lack of opportunities for kids to interact with nature. The streets can be dangerous, so better to stay inside. Outside of the very important opportunities in once-a-week art class, and maybe occasional hands-on science lessons, students do not have a lot of opportunity to work with stuff, to interact with matter.
Crawford's article reminds us that interacting with matter -- wood, stone, fabric, dirt, flowers, clay, paint, etc. directly is an important, direct source of knowledge. In our mediated world, "confrontations with material reality have become exotically unfamiliar." We have become world-stupid. I am reminded of a perhaps apocryphal story related by a former co-worker who had returned from a photo safari in East Africa. On a previous outing, a tourist was mauled by a lion after he insisted on getting out of the Range Rover to photograph the animal close-up. I assume that the tourist had previously encountered lions on television, with no mishaps. Nothing in his experience led him to think there was any danger in getting out of the car.
This indicates another weakness of technology's typical role in the classroom. Technology is often used to give students exposure to the world, by reading articles or watching video. But these are mediated experiences, and have lost most of the richness of direct contact. (Which is not to say mediated experiences are not useful, just that they are not a proper substitute for the real thing.) We learn with our hands as well as our eyes and ears. You can't really understand how the world works without engaging with it directly.
Crawford brings up another dimension of engagement with the world -- how we engage with it. In describing the learning process of working with motorcycle engines, Crawford describes the process as a "conversation": "Good diagnosis requires attentiveness to the machine, almost a conversation with it, rather than assertiveness." This echoes what Craig Holdrege has written about doing Goethean science. He describes scientific investigation as a conversation with phenomena, which also implies an ethical respect for the object of investigation. (See also this piece I wrote: "The Goethean Approach and Human Artifacts")
Again, there is a proper place for technology in the classroom, but the material interaction with keyboard and mouse cannot replace the important interactions with everything else.
I realize I am not saying anything new.
jd
Subscribe to:
Posts (Atom)